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1.0 GATHER compliance 
 
Supplementary Table 1. Guidelines for Accurate and Transparent Health Estimates 
Reporting (GATHER) checklist 

 
Item 
# 

Checklist item Reported on page # 

Objectives and funding 
1 Define the indicator(s), populations (including age, sex, and 

geographic entities), and time period(s) for which estimates were 
made. 

Main text: Precision 
public health and 
education, Main text: 
Methods 

2 List the funding sources for the work. Main text: 
Acknowledgements 

Data Inputs 
   For all data inputs from multiple sources that are synthesized as part of the study: 
3 Describe how the data were identified and how the data were 

accessed.  
Main text: Methods 
(Analysis) 
 

4 Specify the inclusion and exclusion criteria. Identify all ad-hoc 
exclusions. 

Main text: Methods, 
Supplementary 
Information: 3.1 Data 
excluded from model  

5 Provide information on all included data sources and their main 
characteristics. For each data source used, report reference 
information or contact name/institution, population represented, 
data collection method, year(s) of data collection, sex and age 
range, diagnostic criteria or measurement method, and sample size, 
as relevant.  

Supplementary 
Information: 3.0 
Supplementary data 

6 Identify and describe any categories of input data that have 
potentially important biases (e.g., based on characteristics listed in 
item 5). 

Main text: Methods 

   For data inputs that contribute to the analysis but were not synthesized as part of the study: 
7 Describe and give sources for any other data inputs.  Supplementary 

Information: 4.0 
Supplementary 
covariates 

   For all data inputs: 
8 Provide all data inputs in a file format from which data can be 

efficiently extracted (e.g., a spreadsheet rather than a PDF), 
including all relevant meta-data listed in item 5. For any data inputs 
that cannot be shared because of ethical or legal reasons, such as 
third-party ownership, provide a contact name or the name of the 
institution that retains the right to the data. 

Available at 
http://ghdx.healthdata.o
rg/record/africa-
educational-attainment-
geospatial-estimates-
2000-2015 
 
Supplementary 
Information: 3.0 
Supplementary data 
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Data analysis 
9 Provide a conceptual overview of the data analysis method. A 

diagram may be helpful.  
Main text: Methods 
(Analysis) 

10 Provide a detailed description of all steps of the analysis, including 
mathematical formulae. This description should cover, as relevant, 
data cleaning, data pre-processing, data adjustments and weighting 
of data sources, and mathematical or statistical model(s).  

Main text: Methods, 
Supplementary 
Information: 5.2 
Geostatistical model 

11 Describe how candidate models were evaluated and how the final 
model(s) were selected. 

Main text: Methods 
(Model validation), 
Supplementary 
Information: 5.2 
Geostatistical model, 
5.3 Model validation 

12 Provide the results of an evaluation of model performance, if done, 
as well as the results of any relevant sensitivity analysis. 

Main text: Methods 
(Model validation), 
Supplementary 
Information: 5.2 
Geostatistical model, 
5.3 Model validation 

13 Describe methods for calculating uncertainty of the estimates. State 
which sources of uncertainty were, and were not, accounted for in 
the uncertainty analysis. 

Main text: Methods 
(Model validation), 
Supplementary 
Information: 5.2 
Geostatistical model, 
5.3 Model validation 

14 State how analytic or statistical source code used to generate 
estimates can be accessed. 

Available at 
http://ghdx.healthdata.o
rg/record/africa-
educational-attainment-
geospatial-estimates-
2000-2015 

Results and Discussion 
15 Provide published estimates in a file format from which data can be 

efficiently extracted. 
Raster files for spatial 
data and CSVs of 
estimates available at 
http://ghdx.healthdata.o
rg/record/africa-
educational-attainment-
geospatial-estimates-
2000-2015 

16 Report a quantitative measure of the uncertainty of the estimates 
(e.g. uncertainty intervals). 

Supplementary 
Information: 5.2 
Geostatistical model, 
5.3 Model validation 

17 Interpret results in light of existing evidence. If updating a previous 
set of estimates, describe the reasons for changes in estimates. 

Main text: Persistent 
differences in 
educational attainment, 
Implications for 
international goals 

WWW.NATURE.COM/NATURE | 7

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature25761



18 Discuss limitations of the estimates. Include a discussion of any 
modelling assumptions or data limitations that affect interpretation 
of the estimates. 

Main text: Discussion, 
limitations and future 
work, Supplementary 
Information: 2.4 
Limitations of a 
geographic perspective 
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2.0 Supplementary discussion 

2.1 Policy implications of community-level education measurement 

The past decade has seen huge increases in enrollment across sub-Saharan Africa. However, this 
has created a shift in international and domestic policy initiatives from school enrollment to 
improving quality.1 With stagnating international aid, we argue that shifting resources away from 
basic attainment is premature and it is now more important than ever to identify where gaps still 
exist.2 Studies have pointed out that these are typically the most marginalized rural communities, 
and our results certainly identify these communities even in countries that have high national 
average attainment.3,4 Neglecting these communities while shifting national policies to target 
quality is a wasted opportunity not just for improving human capital but for achieving the child 
and maternal health targets of the SDGs.5 
 
There is no universal solution for improving enrollment in these communities. Many rural 
regions of sub-Saharan Africa still lack the basic physical infrastructure and teaching workforce 
necessary for education delivery. But as studies have shown, the problem is typically not lack of 
schools and basic resources, but low attendance rates.4,6 The drivers are diverse and vary 
regionally. Many interventions have found success in providing incentives for attendance, such 
as deworming programs or free school lunches.7 Rural regions of Southeast Asia and Latin 
America have seen success in employing cluster-school systems to pool limited resources, 
improve efficiency and increase access.8 Many countries have moved to eliminate fees and costs 
associated with primary school attendance, but in many cases these economic incentives have not 
been strong enough. Girls are especially at risk, as in many rural communities there are financial 
pressures to marry at very early ages. A World Bank report notes the immense social and 
economic impact of marriage before 18, which is especially prevalent in rural Niger, Ethiopia, 
Uganda and Nigeria.9 In the countries examined, one in five women will have their first child 
before the age of 18. The analysis suggests that gains in annual welfare from the lower 
population growth associated with reduced child marriage leading to improved school enrollment 
could reach more than $500 billion annually by 2030. The World Bank also estimates that 
through ending child marriage and keeping young girls in school, the benefits of lower under-
five mortality and malnutrition could reach more than $90 billion annually by 2030.9 
 
Several organizations have offered policy solutions that can be used to address enrollment in 
these neglected communities. The recently released Global Education Monitoring Report (GEM) 
2017/8 stresses the need for accountability in education and investment therein, especially in the 
context of decreasing international aid.10 The education sector is one of the most frequently 
targeted by accusations of widespread corruption.11 The World Bank has advocated for results-
based financing, aligning investment incentives with improvement in desired outcomes.12 They 
have also advocated for investment in pre-school programs and early child development, which 
can help improve a child’s success once enrolled and reduce the risk of dropout.1 
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Clearly the ultimate goal of SDG4 extends beyond attainment to the quality of education. 
Nevertheless, as the global policy dialogue shifts to focusing on learning outcomes (see 
Supplementary Discussion), our results identify directly where gaps to basic education persist. 
These results can be leveraged to improve accountability in need-based investment strategies 
from the national- to local-level. In communities we have identified as having very low 
attainment, localized information can help elucidate the drivers of low attendance and inform 
effective investment strategies.  

2.2 Quality vs. quantity in education  

As a proportion of total aid, international funding for education has dropped in priority every 
year since 2010, and the subset of that funding targeted at basic education has stagnated.2,4 
Research has demonstrated that aid improves quantitative indicators of education including 
infrastructure (i.e. schools, textbooks and teachers), enrollment, and, most significantly, 
attainment. There is a bias toward investing in these more easily measured outcomes rather than 
in indicators of higher quality, yet research has failed to demonstrate that increased enrollment 
and attainment always lead to improved literacy and cognitive outcomes. Within several 
countries, UNESCO highlights alarming statistics of persistent illiteracy in children despite high 
overall rates of primary schooling, demonstrating that it is a separate, challenging task to assess 
quality differences across different systems.11 While literacy and other quality outcomes have 
been shown to mediate the positive association between education and health, the effect of 
attainment itself remains significant for improving maternal and child health outcomes while 
controlling for other known predictors.3,13 To help explain this linkage, researchers have 
demonstrated across a wide variety of low-income contexts that the pervasiveness of 
Westernized education delivery may facilitate knowledge gains and navigation of other 
bureaucratically organized systems, such as health and family planning sectors.3 In subnational 
areas where the current average is near zero, increasing educational attainment even two or three 
years may have cross-cutting benefits to SDG targets pertaining to health and gender equity. 
Even a few years of attainment, regardless of the quality of education received, has been 
associated with increased prenatal care-seeking, comprehension of public health messaging, 
ability to effectively articulate illness narratives to physicians, and internalization of the pupil-
teacher (and by extension, patient-provider) relationship that improves trust in medical experts 
and uptake of treatment recommendations.3 Because international aid has stagnated for basic 
education, it is more important than ever to be intentional and targeted with limited resources in 
order to achieve the SDG milestone of basic education for all. 

2.3 Community-level vs. individual-level measurement 

Average educational attainment at the 5x5 km / local-level has a significant effect on infant 
mortality beyond the attainment of individuals.3,14 The purpose of our analysis is not inferential 
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and does not seek to provide new insight into these observational relationships between 
education and sustainable development and health, relationships we find to already be very 
convincing in the literature.3,13–15 Rather, our analysis goes one step further by taking a purely 
predictive perspective to provide those working in the health and development implementation 
sectors with the most accurate estimates of educational attainment at a granular local level, 
combining all available data, covariates, and spatiotemporal modelling techniques. 
 
The policy relevance of this predictive analysis is twofold. First, our analysis is novel in mapping 
a human capital indicator across Africa that is particularly relevant to the global development 
agenda. Second, and even more importantly, we are specifically considering educational 
attainment in women of reproductive age (and gender disparities in education) as a critical social 
determinant of health that should not be overlooked by the global health agenda. As resource 
allocation and implementation efforts based on precision public health continue to grow, such as 
interventions targeting child growth failure, it is increasingly important to recognize how the 
geographic distribution of mortality and disease is driven by the geographic distribution of 
human capital. Our analysis thus combines all available data with the most statistically robust 
methodology to provide unique evidence for a public health intervention paradigm. Targeting 
precision health interventions without considering the landscape of human capital poses large 
risks to the sustainability of intervention strategies (i.e., unrealistic assumptions about care-
seeking behavior and retention). High resolution estimates of average, local-level human capital 
must be considered and used in conjunction with granular estimates of disease and mortality 
when striving to make sustainable programmatic decisions at a local level. 

2.4 Limitations of a geographic perspective 

Geographic inequality is only one form of inequality that can be used to investigate 
heterogeneity below the national level. While our framework allows us to explore geographic 
differences at a refined spatial level, there are many other dimensions that contribute to observed 
population inequities, such as social stratification by race, ethnicity or wealth. These dimensions 
may be particularly useful in parsing the landscape of educational attainment in southern sub-
Saharan Africa, where countries like South Africa have large socioeconomic gaps in urban 
centers. Using national household surveys in several countries, the most recent Global Education 
Monitoring Report found that while rural poor have much lower secondary completion rates than 
the national average, rates among urban poor are equally low and often worse.16 Though in the 
present study we use a high resolution 5x5 km grid, even this will have difficulty identifying 
spatial heterogeneity in extremely concentrated urban centers, especially in the absence of robust 
high resolution socioeconomic covariate layers and precise data coverage. Given the volume of 
informal settlements throughout many large cities in Africa, this highlights the need for future 
analyses and data collection to focus on capturing inequalities across disparate urban 
communities. 
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3.0 Supplementary data 
 
The data sources used to model educational attainment indicators are described below. 
Information on survey locations, years, source, polygons, and/or geo-positioned clusters can be 
found in Supplementary Table 2. Supplementary Figures 1-4 display data availability for each 
indicator. Reasons for data sets being excluded from analysis are detailed in Supplementary 
Information 3.1, Data Excluded from Model. 
 
Supplementary Table 2. Household surveys and censuses used in mapping. Number 
identification (NID) can be used to locate a particular data source in the Global Health 
Data Exchange at http://ghdx.healthdata.org/.  

Country Survey 
year(s) Source 

Number 
Identification 

(NID) 

Number of 
geo-

positioned 
clusters 

Number 
of 

polygons 
(areal) 

Algeria 2012 UNICEF MICS 210614 0 1909 
Angola 2001 UNICEF MICS 687 0 1502 
Angola 2015 DHS Program 218555 625 0 
Benin 2001 DHS Program 18950 247 0 
Benin 2006 DHS Program 18959 0 143 
Benin 2011 DHS Program 79839 746 0 
Botswana 2000 UNICEF MICS 1404 0 1 
Burkina Faso 1998 DHS Program 19076 208 0 
Burkina Faso 2003 DHS Program 19088 397 0 
Burkina Faso 2006 IPUMS 105403 0 350 
Burkina Faso 2006 UNICEF MICS 1927 195 0 
Burkina Faso 2010 DHS Program 19133 541 0 
Burundi 2000 UNICEF MICS 1994 0 39 
Burundi 2005 UNICEF MICS 1981 0 39 
Burundi 2010 DHS Program 30431 376 0 
Cameroon 1998 DHS Program 19198 0 552 
Cameroon 2000 UNICEF MICS 2053 0 552 
Cameroon 2004 DHS Program 19211 463 0 
Cameroon 2005 IPUMS 105800 0 575 
Cameroon 2006 UNICEF MICS 2063 0 752 
Cameroon 2011 DHS Program 19274 577 0 
Central 
African 
Republic 2000 UNICEF MICS 2209 0 702 
Central 
African 
Republic 2006 UNICEF MICS 2223 0 475 
Central 
African 
Republic 2010 UNICEF MICS 82832 0 702 
Chad 2000 UNICEF MICS 2244 0 1462 
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Country Survey 
year(s) Source 

Number 
Identification 

(NID) 

Number of 
geo-

positioned 
clusters 

Number 
of 

polygons 
(areal) 

Chad 2004 DHS Program 19315 0 1466 
Chad 2010 UNICEF MICS 76701 0 1453 
Chad 2014 DHS Program 157025 624 0 
Comoros 2012 DHS Program 76850 242 0 
Congo 2005 DHS Program 19391 0 406 
Congo 2011 DHS Program 56151 0 406 
Côte d’Ivoire 1998 DHS Program 18531 140 0 
CÃ´te 
D'ivoire 2000 UNICEF MICS 26444 0 384 
CÃ´te 
D'ivoire 2006 UNICEF MICS 26433 0 282 
CÃ´te 
D'ivoire 2011 DHS Program 18533 341 0 
Democratic 
Republic of 
the Congo 2001 UNICEF MICS 3161 0 2717 
Democratic 
Republic of 
the Congo 2007 DHS Program 19381 293 0 
Democratic 
Republic of 
the Congo 2010 UNICEF MICS 26998 0 2717 
Democratic 
Republic of 
the Congo 2013 DHS Program 76878 492 0 
Djibouti 2006 UNICEF MICS 3404 96 1 
Egypt 2000 DHS Program 19511 997 0 
Egypt 2005 DHS Program 19521 1298 0 
Egypt 2006 IPUMS 35578 0 895 
Egypt 2008 DHS Program 26842 1244 0 
Egypt 2014 DHS Program 154897 1815 0 
Eritrea 2002 DHS Program 19539 0 148 
Ethiopia 2000 DHS Program 19571 533 0 
Ethiopia 2005 DHS Program 19557 528 0 
Ethiopia 2007 IPUMS 227133 0 1382 
Ethiopia 2010 DHS Program 21301 571 0 
Ethiopia 2016 DHS Program 218568 622 0 
Gabon 2000 DHS Program 19579 0 297 
Gabon 2012 DHS Program 76706 331 0 
Gambia 2000 UNICEF MICS 3922 0 18 
Gambia 2013 DHS Program 77384 0 37 
Ghana 1998 DHS Program 19614 400 0 
Ghana 2000 IPUMS 38508 0 329 
Ghana 2003 DHS Program 19627 410 0 
Ghana 2006 UNICEF MICS 4694 0 286 
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Country Survey 
year(s) Source 

Number 
Identification 

(NID) 

Number of 
geo-

positioned 
clusters 

Number 
of 

polygons 
(areal) 

Ghana 2007 UNICEF MICS 160576 0 117 
Ghana 2008 DHS Program 21188 404 0 
Ghana 2010 IPUMS 151306 0 371 
Ghana 2011 UNICEF MICS 63993 13 0 
Ghana 2014 DHS Program 157027 427 0 
Guinea 1999 DHS Program 19670 293 0 
Guinea 2005 DHS Program 19683 291 0 
Guinea 2012 DHS Program 69761 300 0 
Guinea-
Bissau 2000 UNICEF MICS 4808 0 39 
Guinea-
Bissau 2006 UNICEF MICS 4818 0 39 
Kenya 1998 DHS Program 20132 530 0 
Kenya 2000 UNICEF MICS 7387 883 0 
Kenya 2003 DHS Program 20145 399 0 
Kenya 2008 DHS Program 21365 397 0 
Kenya 2014 DHS Program 157057 1591 0 
Lesotho 2004 DHS Program 20167 381 0 
Lesotho 2009 DHS Program 21382 395 0 
Lesotho 2014 DHS Program 157058 399 0 
Liberia 2006 DHS Program 20191 291 0 
Liberia 2008 IPUMS 151310 0 117 
Liberia 2013 DHS Program 77385 322 0 
Madagascar 2003 DHS Program 20223 0 730 
Madagascar 2008 DHS Program 21409 585 0 
Madagascar 2012 UNICEF MICS 125594 127 0 
Malawi 1998 IPUMS 40179 0 259 
Malawi 2000 DHS Program 20252 559 0 
Malawi 2004 DHS Program 20263 520 0 
Malawi 2008 IPUMS 40186 0 260 
Malawi 2010 DHS Program 21393 827 0 
Malawi 2013 UNICEF MICS 161662 0 127 
Mali 1998 IPUMS 40235 0 1047 
Mali 2001 DHS Program 20315 399 0 
Mali 2006 DHS Program 20274 405 0 
Mali 2009 IPUMS 151311 0 952 
Mali 2012 DHS Program 77388 413 0 
Mauritania 2000 DHS Program 20322 0 770 
Mauritania 2011 UNICEF MICS 152783 0 769 
Morocco 2003 DHS Program 20361 480 0 
Morocco 2004 IPUMS 56492 0 597 
Mozambique 2003 DHS Program 20394 0 959 
Mozambique 2007 IPUMS 227143 0 1024 
Mozambique 2011 DHS Program 55975 609 0 
Namibia 2000 DHS Program 20417 259 0 
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Country Survey 
year(s) Source 

Number 
Identification 

(NID) 

Number of 
geo-

positioned 
clusters 

Number 
of 

polygons 
(areal) 

Namibia 2006 DHS Program 20428 491 0 
Namibia 2013 DHS Program 150382 549 0 
Niger 1998 DHS Program 20537 268 0 
Niger 2000 UNICEF MICS 9439 0 1123 
Niger 2006 DHS Program 20499 0 1123 
Niger 2012 DHS Program 74393 0 1123 
Nigeria 2003 DHS Program 20567 360 0 
Nigeria 2006 IPUMS 151312 0 1097 
Nigeria 2007 IPUMS 151312 0 1097 
Nigeria 2007 UNICEF MICS 9516 0 1095 
Nigeria 2008 IPUMS 151313 0 1097 
Nigeria 2008 DHS Program 21433 886 0 
Nigeria 2009 IPUMS 151314 0 1097 
Nigeria 2010 IPUMS 151317 0 1097 
Nigeria 2013 DHS Program 77390 889 0 
Rwanda 2000 DHS Program 20722 0 36 
Rwanda 2000 UNICEF MICS 26930 0 36 
Rwanda 2002 IPUMS 42432 0 35 
Rwanda 2005 DHS Program 20740 456 0 
Rwanda 2010 DHS Program 56040 492 0 
Rwanda 2014 DHS Program 157063 492 0 
Sao Tome 
and Principe 2000 UNICEF MICS 27055 0 3 
Sao Tome 
and Principe 2008 DHS Program 26866 0 7 
Sao Tome 
and Principe 2014 UNICEF MICS 214640 0 7 
Senegal 2000 UNICEF MICS 27044 0 241 
Senegal 2002 IPUMS 43142 0 256 
Senegal 2005 DHS Program 26855 366 0 
Senegal 2010 DHS Program 56063 385 0 
Senegal 2012 DHS Program 111432 200 0 
Senegal 2014 DHS Program 191270 0 244 
Senegal 2015 DHS Program 218592 0 244 
Senegal 2016 DHS Program 286772 214 0 
Sierra Leone 2000 UNICEF MICS 11639 0 86 
Sierra Leone 2004 IPUMS 11661 0 92 
Sierra Leone 2008 DHS Program 21258 350 0 
Sierra Leone 2010 UNICEF MICS 76700 0 93 
Sierra Leone 2013 DHS Program 131467 435 0 
Somalia 2006 UNICEF MICS 11774 0 751 
Somalia 2011 UNICEF MICS 91507 509 109 
South Africa 1998 DHS Program 20796 0 1610 
South Africa 2001 IPUMS 43152 0 1635 
South Africa 2007 IPUMS 43158 0 1632 
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Country Survey 
year(s) Source 

Number 
Identification 

(NID) 

Number of 
geo-

positioned 
clusters 

Number 
of 

polygons 
(areal) 

South Africa 2011 IPUMS 227194 0 1631 
South Sudan 2008 IPUMS 106548 0 762 
Swaziland 2000 UNICEF MICS 12320 0 24 
Swaziland 2006 DHS Program 20829 270 0 
Swaziland 2010 UNICEF MICS 30325 0 24 
Togo 1998 DHS Program 20909 287 0 
Togo 2000 UNICEF MICS 12886 0 70 
Togo 2006 UNICEF MICS 12896 0 70 
Togo 2010 UNICEF MICS 40021 0 70 
Togo 2013 DHS Program 77515 330 0 
Tunisia 2011 UNICEF MICS 76709 0 223 
Uganda 2000 DHS Program 20993 266 0 
Uganda 2002 IPUMS 43328 0 261 
Uganda 2006 DHS Program 21014 336 0 
Uganda 2011 DHS Program 56021 400 0 
United 
Republic of 
Tanzania 1999 DHS Program 20865 173 0 
United 
Republic of 
Tanzania 2002 IPUMS 43212 0 1112 
United 
Republic of 
Tanzania 2004 DHS Program 20875 0 1061 
United 
Republic of 
Tanzania 2009 DHS Program 21331 458 0 
United 
Republic of 
Tanzania 2015 DHS Program 218593 608 0 
Yemen 2006 UNICEF MICS 13816 0 176 
Zambia 2000 IPUMS 151325 0 895 
Zambia 2001 DHS Program 21102 0 896 
Zambia 2007 DHS Program 21117 319 0 
Zambia 2010 IPUMS 151326 0 895 
Zambia 2013 DHS Program 77516 719 0 
Zimbabwe 1999 DHS Program 21151 221 0 
Zimbabwe 2005 DHS Program 21163 396 0 
Zimbabwe 2009 UNICEF MICS 35493 0 486 
Zimbabwe 2010 DHS Program 55992 393 0 
Zimbabwe 2014 UNICEF MICS 152720 0 972 
Zimbabwe 2015 DHS Program 157066 400 0 
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3.1 Data excluded from model 

Select data sources that were identified to contain years of education within the geographic area 
of interest were excluded for the following reasons: missing survey weights for areal data, 
missing gender variable, incomplete sampling (e.g., only a specific age range), or untrustworthy 
data (as determined by the survey administrator or by inspection). We use the term 
“untrustworthy data (as determined by the survey administrator or by inspection)” in reference to 
the exclusion of only one specific source for the education model, the 2008 South Sudan Census. 
This source was removed due to implausibly high educational attainment values around the 
capital city and expert opinion regarding the quality of the data. Within each source, 
administrative units with a sample size of one were excluded. 

WWW.NATURE.COM/NATURE | 17

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature25761



   
 

         a        b 

 
Supplementary Figure 1. Education data availability by type and country for women ages 15-49, 2000–2015.   
All data are shown by country and year of survey and mapped at their corresponding geopositioned coordinate or area. The total 
number of points and polygons (areal) for each country are ranked and plotted by data source, type, and sample size (a). The rank 
column describes a composite metric of data richness, such that each five-year period with any point data adds an integer value of 1 to 
the country rank, and each five-year period with any polygon data adds a value of 0.01 to the rank. Sample size represents the number 
of individual microdata records for each survey. Mean years of attainment for the input coordinate or area are mapped (b). This 
database consists of 39,933 clusters and 3,050 polygons. 
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Supplementary Figure 2. Education data availability by type and country for men ages 15-49, 2000–2015.  
All data are shown by country and year of survey and mapped at their corresponding geopositioned coordinate or area. The total 
number of points and polygons (areal) for each country are ranked and plotted by data source, type, and sample size (a). The rank 
column describes a composite metric of data richness, such that each five-year period with any point data adds an integer value of 1 to 
the country rank, and each five-year period with any polygon data adds a value of 0.01 to the rank. Sample size represents the number 
of individual microdata records for each survey. Mean years of attainment for the input coordinate or area are mapped (b). This 
database consists of 39,933 clusters and 3,050 polygons. 
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Supplementary Figure 3. Education data availability by type and country for women ages 20-24, 2000–2015.  
All data are shown by country and year of survey and mapped at their corresponding geopositioned coordinate or area. The total 
number of points and polygons (areal) for each country are ranked and plotted by data source, type, and sample size (a). The rank 
column describes a composite metric of data richness, such that each five-year period with any point data adds an integer value of 1 to 
the country rank, and each five-year period with any polygon data adds a value of 0.01 to the rank. Sample size represents the number 
of individual microdata records for each survey. Mean years of attainment for the input coordinate or area are mapped (b). This 
database consists of 39,933 clusters and 3,050 polygons. 
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         a b 

Supplementary Figure 4. Education data availability by type and country for men ages 20-24, 2000–2015.  
All data are shown by country and year of survey and mapped at their corresponding geopositioned coordinate or area. The total 
number of points and polygons (areal) for each country are ranked and plotted by data source, type, and sample size (a). The rank 
column describes a composite metric of data richness, such that each five-year period with any point data adds an integer value of 1 to 
the country rank, and each five-year period with any polygon data adds a value of 0.01 to the rank. Sample size represents the number 
of individual microdata records for each survey. Mean years of attainment for the input coordinate or area are mapped (b). This 
database consists of 39,933 clusters and 3,050 polygons. 
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4.0 Supplementary covariates 

A variety of socioeconomic and environmental variables were used to predict educational 
attainment. Where available, the finest spatio-temporal resolution of gridded data sets was used. 

Supplementary Table 3. Covariates used in mapping 

Covariate 
Temporal 
resolution 

Source Reference 

Aridity Annual 

Climatic 
Research Unit 
Time-Series 
(CRUTS) 

Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 

University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 

Average daily 
maximum 
temperature 

Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 

University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 

Average daily 
mean temperature 

Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 

University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 

Average daily 
minimum 
temperature 

Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 

University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
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Covariate 
Temporal 
resolution 

Source Reference 

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 

Average Land 
Surface 
Temperature 
(LST) 

Annual 

MODIS USGS & NASA. Land surface temperature and 
emissivity 8-day L3 global 1km MOD11A2 
dataset. Available at: 
https://lpdaac.usgs.gov/dataset_discovery/modis/m
odis_products_table/mod11a2. (Accessed: 24th 
July 2017) 

Wan, Z. MODIS Land-Surface Temperature 
Algorithm Theoretical Basis Document (LST 
ATBD). 

Weiss, D. J. et al. An effective approach for gap-
filling continental scale remotely sensed time-
series. Isprs J. Photogramm. Remote Sens. 98, 
106–118 (2014). 

Daytime LST Annual 

MODIS USGS & NASA. Land surface temperature and 
emissivity 8-day L3 global 1km MOD11A2 
dataset. Available at: 
https://lpdaac.usgs.gov/dataset_discovery/modis/m
odis_products_table/mod11a2. (Accessed: 24th 
July 2017) 

Wan, Z. MODIS Land-Surface Temperature 
Algorithm Theoretical Basis Document (LST 
ATBD). 

Weiss, D. J. et al. An effective approach for gap-
filling continental scale remotely sensed time-
series. Isprs J. Photogramm. Remote Sens. 98, 
106–118 (2014). 

Distance to rivers Static 

Natural Earth 
Data (derived) 

 Natural Earth. Rivers and lake centerlines dataset. 
Available at: 
http://www.naturalearthdata.com/downloads/10m-
physical-vectors/10m-rivers-lake-centerlines/. 
(Accessed: 24th July 2017) 

Diurnal difference 
in LST 

Annual 

MODIS USGS & NASA. Land surface temperature and 
emissivity 8-day L3 global 1km MOD11A2 
dataset. Available at: 
https://lpdaac.usgs.gov/dataset_discovery/modis/m
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Covariate 
Temporal 
resolution 

Source Reference 

odis_products_table/mod11a2. (Accessed: 24th 
July 2017) 

Wan, Z. MODIS Land-Surface Temperature 
Algorithm Theoretical Basis Document (LST 
ATBD). 

Weiss, D. J. et al. An effective approach for gap-
filling continental scale remotely sensed time-
series. Isprs J. Photogramm. Remote Sens. 98, 
106–118 (2014). 

Diurnal 
temperature range 

Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 

University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 

Enhanced 
Vegetation Index 
(EVI) 

Annual 

MODIS Huete, A., Justice, C. & van Leeuwen, W. MODIS 
vegetation index (MOD 13) algorithm theoretical 
basis document. (1999). 

USGS & NASA. Vegetation indices 16-Day L3 
global 500m MOD13A1 dataset. Available at: 
https://lpdaac.usgs.gov/dataset_discovery/modis/m
odis_products_table/mod13a1. (Accessed: 25th 
July 2017) 

Weiss, D. J. et al. An effective approach for gap-
filling continental scale remotely sensed time-
series. Isprs J. Photogramm. Remote Sens. 98, 
106–118 (2014). 

Fertility Annual 

WorldPop 
(derived) 

Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High 
resolution global gridded data for use in population 
studies. Sci. Data 4, sdata20171 (2017). 

World Pop. Get data. Available at: 
http://www.worldpop.org.uk/data/get_data/. 
(Accessed: 25th July 2017) 
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Covariate 
Temporal 
resolution 

Source Reference 

Frost day 
frequency 

Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 

University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017) 

Irrigation Static 

University of 
Frankfurt 

Goethe-Universität. Generation of a digital global 
map of irrigation areas. Available at: 
https://www.uni-
frankfurt.de/45218039/Global_Irrigation_Map. 
(Accessed: 25th July 2017) 

Nighttime LST Annual 

MODIS USGS & NASA. Land surface temperature and 
emissivity 8-day L3 global 1km MOD11A2 
dataset. Available at: 
https://lpdaac.usgs.gov/dataset_discovery/modis/m
odis_products_table/mod11a2. (Accessed: 24th 
July 2017) 

Wan, Z. MODIS Land-Surface Temperature 
Algorithm Theoretical Basis Document (LST 
ATBD). 

Weiss, D. J. et al. An effective approach for gap-
filling continental scale remotely sensed time-
series. Isprs J. Photogramm. Remote Sens. 98, 
106–118 (2014). 

Nighttime lights Annual 

NOAA DMSP NOAA. Version 4 DMSP-OLS nighttime lights 
time series dataset. Available at: 
https://www.ngdc.noaa.gov/eog/dmsp/downloadV4
composites.html. (Accessed: 25th July 2017) 

Normalized 
Difference 
Vegetation Index 
(NDVI) 

Annual 

AVHRR NASA & NOAA. Advanced Very High Resolution 
Radiometer (AVHRR) Normalized Difference 
Vegetation Index (NDVI) dataset. Available at: 
https://nex.nasa.gov/nex/projects/1349/. (Accessed: 
25th July 2017) 

Population Annual 

WorldPop Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High 
resolution global gridded data for use in population 
studies. Sci. Data 4, sdata20171 (2017). 
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Covariate 
Temporal 
resolution 

Source Reference 

World Pop. Get data. Available at: 
http://www.worldpop.org.uk/data/get_data/. 
(Accessed: 25th July 2017) 

Potential 
Evapotranspiratio
n (PET) 

Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 

University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 

Precipitation Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 

University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 

Tassled cap 
brightness 

Annual 

MODIS USGS & NASA. Nadir BRDF- Adjusted 
Reflectance Reflectance 16-Day L3 Global 1km 
dataset. Available at: 
https://lpdaac.usgs.gov/dataset_discovery/modis/m
odis_products_table/mcd43b4. (Accessed: 25th 
July 2017) 

Strahler, A. H. & Muller, J.-P. MODIS 
BRDF/Albedo product: algorithm theoretical basis 
document version 5.0. (1999). 

Weiss, D. J. et al. An effective approach for gap-
filling continental scale remotely sensed time-
series. Isprs J. Photogramm. Remote Sens. 98, 
106–118 (2014). 

Tassled cap 
wetness 

Annual 

MODIS USGS & NASA. Nadir BRDF- Adjusted 
Reflectance Reflectance 16-Day L3 Global 1km 
dataset. Available at: 
https://lpdaac.usgs.gov/dataset_discovery/modis/m
odis_products_table/mcd43b4. (Accessed: 25th 
July 2017) 
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Covariate 
Temporal 
resolution 

Source Reference 

 
Strahler, A. H. & Muller, J.-P. MODIS 
BRDF/Albedo product: algorithm theoretical basis 
document version 5.0. (1999). 

Travel time to 
nearest settlement 
>50,000 
inhabitants 

Static 

Malaria Atlas 
Project, Big 
Data Institute, 
Nuffield 
Department 
of Medicine, 
University of 
Oxford 

Weiss, D. J. et al. A global map of travel time to 
cities to assess inequalities in accessibility in 2015. 
Nature 533, 333-336 (2018).  

Urbanicity Annual 

European 
Commission/
GHS 

Pesaresi, M. et al. Operating procedure for the 
production of the Global Human Settlement Layer 
from Landsat data of the epochs 1975, 1990, 2000, 
and 2014. (Publications Office of the European 
Union, 2016). 

Wet day 
frequency 

Annual 

CRUTS Harris, I., Jones, P. d., Osborn, T. j. & Lister, D. h. 
Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 dataset. Int. J. 
Climatol. 34, 623–642 (2014). 
 
University of East Anglia. Climatic Research Unit 
TS v. 3.24 dataset. Available at: 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.0
1/. (Accessed: 24th July 2017). 
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Supplementary Figure 5. Covariates. 
Twenty-nine covariate raster layers of possible socioeconomic and environmental correlates of educational attainment in Africa were 
used as inputs for the stacking modelling process. Time-varying covariates are presented for the year 2015. For the year of production 
of non-time-varying covariates, please refer to the individual covariate citation in Supplementary Table 3 for additional detail.
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5.0 Supplementary methods 

5.1 Cluster combination and spatial integration over polygon records 

Our individual-level data were collapsed (summarised) into clusters if they could be 
georeferenced to latitude-longitude pairs. Otherwise, we collapsed our individual-level data to 
the smallest polygon that could be referenced. We used survey weights and the survey package 
in R to account for matching our observations to a higher resolution than the representative 
resolution of the survey.17,18 The survey package was used to adjust the mean response in the 
higher resolution polygons using post-stratification weighted averages19, but we found that the 
package somewhat regularly produced very large design effects estimates that rendered our 
polygon sample size adjustments to be nonsensical. Instead, we use the classic Kish's effective 
sample size calculation where the effective sample size for a polygon is calculated as: 

!"## =
( &')

)

( &'))

where &' is the survey weight associated with data observation i, and the summations in the 
effective sample size calculation are both taken over all observation within a polygon.20 

Data without latitude and longitude, but that could be geolocated to an administrative area, were 
resampled to generate candidate point locations based on the underlying population of the 
administrative area. The main concept is to leverage covariate values across the polygon when 
performing the regression, while simultaneously accounting for a population-driven survey 
design. The methods used for the resampling are consistent with those used in geospatial 
modelling of under-5 mortality, published previously.21  

For each polygon-level observation, 10,000 points were randomly sampled from within the 
polygon (regardless of the polygon’s area) using the WorldPop total population raster22 to weight 
the locations of the draws. K-means clustering was performed on the candidate points to generate 
integration points (1 per 1,000 pixels) used in the modelling. Weights were assigned to each 
integration point proportionally to the number of candidate points that entered into the k-means 
cluster, such that the weight of each point represented the number of population-sampled 
locations contained within the K-means cluster location, divided by the number of sampled 
points generated (10,000). Each point generated by this process is assigned the mean attainment 
observed from the survey for that polygon. These sample weights are used in model fit.23 

5.2 Geostatistical model 

5.2.1 Model geographies 

A total of five models were run for each indicator based on continuous geographic regions within 
Africa chosen to align with the regions used in the Global Burden of Disease Study, which 
determines regions based on both proximity and epidemiological similarity (see tables in 
Supplementary Fig. 1-3 for listing of regions and countries). Minor changes were made to the 
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GBD regions to ensure spatial contiguity across Africa (see Extended Data Fig. 2 for an 
illustration of the modelling regions). All data within the spatial region, and within a one-degree 
buffer from the boundaries of each region, were included in each model to minimise edge 
effects.  

5.2.2 Ensemble covariate modelling 

An ensemble covariate modelling method was implemented in order to both select covariates and 
capture possible non-linear effects and complex interactions between them.24 For each region, 
four sub-models were fit to our dataset, using all of our covariate data as explanatory predictors: 
generalised additive models, boosted regression trees, and lasso regression. Sample weights are 
used in sub-models, where applicable, such that cluster locations with latitude and longitude had 
a sample weight of 1, while cluster locations where the latitude and longitude was generated by 
the polygon resampling process had a weight based on the K-means clustering process (see 5.1, 
Cluster combination and spatial integration over polygon records).  

Each sub-model is fit using five-fold cross-validation to avoid overfitting. The out-of-sample 
predictions from across the five holdouts are compiled into a single comprehensive set of 
predictions from that model. Additionally, the same sub-models were also run using 100% of the 
data, and a full set of in-sample predictions were created. The five sets of out-of-sample sub-
model predictions are fed into the full geostatistical model as the explanatory covariates when 
performing the model fit. The in-sample predictions from the sub-models are used as the 
covariates when generating predictions using the fitted full geostatistical model. A recent study 
has shown that this ensemble approach can improve predictive validity by up to 25% over an 
individual model.24 

Predictions from each sub-model are generated based on patterns and relationships between the 
raw covariates and attainment data, while predictions from the full geostatistical model are 
generated based on patterns and relationships between the predictions from the ensemble of sub-
models and attainment data. To discover the relationships between the sub-model prediction 
layers (used as covariates in the full geostatistical model) and the attainment data, the only values 
of the covariates (sub-model prediction layers) “seen” by the model are the values underlying the 
locations of surveys. As such, it is possible that estimates will be generated in areas where the 
values of the covariates exceed the minimum and maximum values observed by the model. In 
these areas, the estimates are generated by extrapolating from the patterns observed within the 
range of covariates underlying the survey and census data. 

5.2.3 Model description 

Gaussian data are modeled within a Bayesian hierarchical modeling framework using a spatially 
and temporally explicit hierarchical generalized linear regression model to fit mean years of 
education attainment in five regions in Africa as defined in the GBD (Northern, Western, 
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Southern, Central, and Eastern; see Extended Data Figure 3).23,25 For each GBD region we 
approximated the posterior distribution of our Bayesian model:  

*+,'|.', 0, 	2' ∼ 45,2265! .', 0, 	2'

7"89:|;:,<,	=: *+,' = 	
<	=:
)>
exp	(−

C

)
0	2'(*+,' − .'))) 

.' = 	DE + GHI + JKL' + J'

J' ∼ M(0, O!,P2 ) 

JKL|ΣSTUVW, 	ΣX'Y" ∼ 4Z(0, 	ΣSTUVW ⊗	ΣX'Y") 

ΣSTUVW = 	
2C\]

0×Γ `
× ab ]×Κ] ab

ΣX'Y"d,e = f 	Xg\Xh . 

We model the mean years of attainment at cluster 6 as Gaussian data given precision 0 and a 
fixed scaling parameter	2'. We use the sample size in each cluster as our scaling parameter. We 
have suppressed the notation, but the means, *+,', scaling parameters,	2', predictions from the 
three submodels GH, and residual terms J∗ are all indexed at a space-time coordinate. The means, 
*+,' represent an individual’s expected educational attainment given that they live at that 
particular location. Mean attainment was modeled as a linear combination of the three sub-
models (GAM, BRT and lasso), GH,a correlated spatiotemporal error term, JKL', and an 
independent nugget effect,	J'. Coefficients, I, on the sub-models represent their respective 
predictive weighting in the mean, while the joint error term, JKL, accounts for residual 
spatiotemporal autocorrelation between individual data points that remains after accounting for 
the predictive effect of the sub-model covariates and the nugget, J', is an independent error term 
independent. The residuals, JKL, are modeled as a three-dimensional Gaussian process in space-
time centered at zero and with a covariance matrix constructed from a Kroenecker product of 
spatial and temporal covariance kernels. The spatial covariance, ΣSTUVW, is modeled using an 
isotropic and stationary Matérn function26, and temporal covariance, ΣjklW, as an annual 
autoregressive (AR1) function over the 16 years represented in the model. This approach 
leveraged the data’s residual correlation structure to more accurately predict prevalence 
estimates for locations with no data, while also propagating the dependence in the data through 
to uncertainty estimates.27 The posterior distributions were fit using computationally efficient 
and accurate approximations in R-INLA (integrated nested Laplace approximation) with the 
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stochastic partial differential equations (SPDE) approximation to the Gaussian process 
residuals.28 Pixel-level uncertainty intervals (UIs) were generated from 1,000 draws (i.e., 
statistically plausible candidate maps)29 created from the posterior-estimated distributions of 
modelled parameters.  
 

5.2.4 Priors 

The following priors were used for all four of our education models:23  
• DE ∼ M . = 0, O) = 2) ,  
• I ∼''8 M . = 0, O) = 2) ,  
• mnP

Cop

C\p
∼ M(. = 0, O) = 1/0.15), 

• mnP
C

uvwx
y ∼ mnPP5zz5 { = 1, | = 2 . 

• }C = log 0 ∼ M(.ÅÇ, OÅÇ
) ) 

• }) = log a ∼ M(.), OÅy
) ) 

 
Given that our covariates used in INLA, i.e. the predicted outputs from the ensemble models, 
should be on the same scale as our predictive target, we believe that the intercept in our model 
should be close to zero and that the regression coefficients should sum to one. As such, we have 
chosen the prior for our intercept to be N(0, σ) = 3)), and the prior for the fixed effect 
coefficients to be N( C

#	WáSWlàâW	läãWâS
, σ) = 3)). The prior on the temporal correlation parameter 

ρ is chosen to be mean zero, showing no prior preference for either positive or negative auto-
correlation structure, and with a distribution that is wide enough such that within three standard 
deviations of the mean the prior includes values of ρ	ranging from -0.95 to 0.95. The priors on 
the random effects variances were chosen to be relatively loose given that we believe our fixed 
effects covariates should be well correlated with our outcome of interest, which might suggest 
relatively small random effects values. At the same time, we wanted to avoid using a prior that 
was so diffuse as to actually put high prior weight on large random effect variances. For stability, 
we used the uncorrelated multivariate normal priors that INLA automatically determines (based 
on the finite elements mesh) for the log-transformed spatial hyperparameters a and 0. The mean 
and variance parameters for the hyperpriors selected by INLA for the meshes in each region can 
be found in Supplementary Table 4. In our parameterization we represent { and | in the 
loggamma distribution as scale and shape, respectively.  
 
Supplementary Table 4. Spatial hyperparameter priors by region  

Region çéè  êéè
ë  çë êéë

ë  
Central sub-Saharan Africa -0.23082 10 -1.03469 10 
Eastern sub-Saharan Africa 0.104454 10 -1.36997 10 
Northern Africa 0.22028 10 -1.48579 10 
Southern sub-Saharan Africa -0.17385 10 -1.09166 10 
Western sub-Saharan Africa 0.181774 10 -1.44729 10 
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5.2.5 Mesh construction 

We constructed the finite elements mesh for the stochastic partial differential equation 
approximation to the Gaussian process regression using a simplified polygon boundary (in which 
coastlines and complex boundaries were smoothed) for each of the regions within our model.23 
We set the inner mesh triangle maximum edge length (the mesh size for areas over land) to be 
0.2 degrees, and the buffer maximum edge length (the mesh size for areas over the ocean) to be 
5.0 degrees. An example of finite elements mesh-constructed for eastern sub-Saharan mesh can 
be found in Supplementary Figure 12. 
 

5.2.6 Model fitting and estimate generation 

Models were fit in INLA with methods consistent with those used in geospatial modelling of 
under-5 mortality, published previously.21  
 
Resampling K-means weights (Supplementary Methods 5.2) were used within the INLA fit by 
multiplying the corresponding log-likelihood evaluation for the specific observation by the 
observation’s K-means weight. Data points that could be georeferenced to latitude-longitude 
locations were assigned a weight of 1, ensuring that when the log-likelihood contribution from 
that observation was evaluated it contributed only to the log-likelihood at the observation’s 
space-time location. For cluster locations generated based on the polygon resampling process, 
the log-likelihood of those points contributed proportionate to the K-means weights, effectively 
diffusing the evaluation of the observation across the polygon. 
 
As part of the ensemble modelling process, prediction surfaces from the out-of-sample ensemble 
sub-models were used as covariates in the spatiotemporal model. Estimates of the fixed effects 
beta coefficients derived from the contribution of each of the sub-models to INLA’s predicted 
prevalence estimates, in conjunction with parameter estimates of the contribution of location and 
time (based on estimated parameters described in model description in the Supplementary 
Methods 5.3.3), were generated and can be found in Supplementary Tables 5-7. To create final 
estimates, the in-sample prediction surfaces of prevalence from the sub-models (serving as 
covariates) were used to calculate estimates of prevalence for each pixel in each year.  
 
All estimates were generated by taking 1,000 draws from the posterior distribution, which 
yielded 1,000 candidate maps used to summarise the pixel- and aggregated-level statistics. For 
estimates at the pixel level, these draws were used directly to generate estimates and uncertainty. 
Aggregated estimates, in which estimates at the pixel level were summarised to administrative 
boundaries, were generated by creating population-weighted averages for each administrative 
boundary, for each draw.  
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Supplementary Figure 6. Finite elements mesh.  
The finite elements mesh used to fit the space-time correlated error for the Eastern sub-Saharan 
Africa (ESSA) region overlaid on the countries in ESSA. Both the fine-scale mesh over land in 
the modelling region and the coarser buffer region mesh are shown. The simplified region 
polygon used to determine the boundary for the modelling region is shown in blue. 

5.2.7 Model Results 

Fitted parameters and hyperparameters, as well as their 95% uncertainty intervals are shown by 
indicator and region in Supplementary Tables 5-7. Spatial hyperparameters (0 and a) and their 
uncertainties have been transformed into more interpretable nominal variance and range 
parameters. Nominal variance, approximating the variance at any single point, is calculated as 
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!nz. í5ì = 4ïa)0), and nominal range, approximating the distance before spatial correlation 
decays by 90%, as ì5!P* = 8/a.[20]
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Supplementary Table 5. Education (women, ages 15-49) fitted parameters.  
Lower, median, and upper quantiles (0.025%, 0.50%, 0.975%) are displayed for the main parameters by region. The fixed effects 
covariates corresponding to the predicted ensemble rasters are shown in the first five rows, while fitted values for the spatiotemporal 
field hyperparameters and the precisions (inverse variance) for our random effects are shown in the bottom five rows. 

Central sub-Saharan 
Africa quantiles 

Eastern sub-Saharan 
Africa quantiles 

Northern Africa 
quantiles 

Southern sub-Saharan 
Africa quantiles 

Western sub-Saharan 
Africa quantiles 

0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 
int -1.241 -0.223 0.794 -0.076 0.693 1.462 -0.389 0.231 0.851 -0.543 0.065 0.672 0.220 0.382 0.543 
gam -0.170 -0.080 0.010 -0.075 -0.047 -0.020 -0.204 -0.125 -0.046 -0.415 -0.364 -0.314 -0.048 -0.003 0.042 
gbm 0.630 0.721 0.811 0.741 0.763 0.784 0.555 0.612 0.669 0.495 0.540 0.585 0.631 0.663 0.696 
lasso 0.279 0.359 0.440 0.257 0.285 0.313 0.433 0.513 0.593 0.770 0.824 0.878 0.296 0.340 0.383 
Nominal 
Range 10.618 15.009 19.670 6.232 7.574 9.410 3.569 4.820 6.649 2.829 4.071 5.550 2.112 2.458 2.904 
Nominal 
Variance 1.473 2.292 3.623 3.460 5.007 7.542 2.012 3.065 4.665 0.988 1.782 2.962 0.454 0.557 0.680 
Ar1 ! 0.543 0.761 0.887 0.851 0.890 0.923 0.144 0.595 0.861 0.847 0.920 0.954 0.720 0.797 0.857 
Variance for 
IID.ID 0.086 0.104 0.134 0.150 0.161 0.171 0.775 0.873 0.976 0.061 0.076 0.091 0.171 0.184 0.201 
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Supplementary Table 6. Education (male, ages 15-49) fitted parameters.  
Lower, median, and upper quantiles (0.025%, 0.50%, 0.975%) are displayed for the main parameters by region. The fixed effects 
covariates corresponding to the predicted ensemble rasters are shown in the first five rows, while fitted values for the spatiotemporal 
field hyperparameters and the precisions (inverse variance) for our random effects are shown in the bottom five rows. 

Central sub-Saharan 
Africa quantiles 

Eastern sub-Saharan 
Africa quantiles 

Northern Africa 
quantiles 

Southern sub-Saharan 
Africa quantiles 

Western sub-Saharan 
Africa quantiles 

0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 
int -0.656 -0.082 0.492 -0.010 0.833 1.675 -1.081 -0.375 0.331 -0.204 0.361 0.924 0.284 0.709 1.134 
gam -0.140 -0.034 0.072 0.015 0.045 0.075 -0.297 -0.217 -0.137 -0.377 -0.324 -0.271 -0.073 -0.021 0.031 
gbm 0.512 0.616 0.719 0.474 0.496 0.518 0.326 0.396 0.466 0.521 0.564 0.607 0.477 0.508 0.539 
lasso 0.331 0.419 0.506 0.430 0.459 0.489 0.740 0.821 0.902 0.706 0.760 0.813 0.462 0.513 0.564 
Nominal 
Range 6.025 7.917 11.413 5.535 6.544 7.866 3.805 4.975 6.737 2.645 3.559 5.266 3.629 4.475 5.509 
Nominal 
Variance 1.023 1.386 2.049 6.032 8.290 11.724 2.837 4.233 6.514 1.387 2.239 4.229 1.334 1.852 2.593 
Ar1 ! 0.618 0.794 0.912 0.843 0.881 0.912 0.294 0.688 0.886 0.909 0.950 0.978 0.703 0.790 0.856 
Variance for 
IID.ID 0.081 0.097 0.127 0.162 0.175 0.187 0.330 0.385 0.444 0.077 0.094 0.117 0.235 0.256 0.278 
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Supplementary Table 7. Education (women, ages 20-24) fitted parameters.  
Lower, median, and upper quantiles (0.025%, 0.50%, 0.975%) are displayed for the main parameters by region. The fixed effects 
covariates corresponding to the predicted ensemble rasters are shown in the first five rows, while fitted values for the spatiotemporal 
field hyperparameters and the precisions (inverse variance) for our random effects are shown in the bottom five rows. 

Central sub-Saharan 
Africa quantiles 

Eastern sub-Saharan 
Africa quantiles 

Northern Africa 
quantiles 

Southern sub-Saharan 
Africa quantiles 

Western sub-Saharan 
Africa quantiles 

0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 
int -1.049 -0.227 0.594 0.008 0.878 1.747 -0.737 0.073 0.883 -0.605 0.042 0.689 0.332 0.628 0.924 
gam -0.180 -0.084 0.013 0.049 0.078 0.107 -0.209 -0.132 -0.055 -0.323 -0.280 -0.237 -0.105 -0.057 -0.009
gbm 0.541 0.636 0.730 0.417 0.437 0.456 0.446 0.514 0.582 0.487 0.532 0.577 0.529 0.563 0.596 
lasso 0.362 0.448 0.534 0.455 0.485 0.516 0.537 0.618 0.700 0.696 0.748 0.799 0.447 0.494 0.542 
Nominal 
Range 6.935 9.339 12.761 6.189 7.203 8.365 3.848 5.283 7.349 3.719 5.210 7.312 2.709 3.216 3.847 
Nominal 
Variance 1.827 2.873 4.639 6.222 8.280 11.021 3.433 5.297 8.361 0.930 1.660 3.134 1.048 1.337 1.718 
Ar1 ! 0.481 0.704 0.848 0.769 0.819 0.859 0.256 0.708 0.903 0.866 0.923 0.959 0.728 0.805 0.860 
Variance for 
IID.ID 0.087 0.120 0.162 0.134 0.147 0.159 0.862 0.989 1.130 0.034 0.042 0.052 0.210 0.230 0.255 
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Supplementary Table 8. Education (men, ages 20-24) fitted parameters.  
Lower, median, and upper quantiles (0.025%, 0.50%, 0.975%) are displayed for the main parameters by region. The fixed effects 
covariates corresponding to the predicted ensemble rasters are shown in the first five rows, while fitted values for the spatiotemporal 
field hyperparameters and the precisions (inverse variance) for our random effects are shown in the bottom five rows. 

 Central sub-Saharan 
Africa quantiles 

Eastern sub-Saharan 
Africa quantiles 

Northern Africa 
quantiles 

Southern sub-Saharan 
Africa quantiles 

Western sub-Saharan 
Africa quantiles 

 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 0.025 0.500 0.975 
int -0.870 -0.134 0.600 0.071 0.855 1.638 -1.495 -0.623 0.250 0.012 0.518 1.024 0.223 0.683 1.142 
gam -0.165 -0.045 0.074 -0.040 -0.009 0.023 -0.179 -0.101 -0.023 -0.362 -0.306 -0.250 -0.104 -0.050 0.004 
gbm 0.346 0.448 0.550 0.468 0.493 0.518 0.210 0.283 0.356 0.437 0.484 0.531 0.436 0.470 0.503 
lasso 0.500 0.598 0.695 0.484 0.515 0.546 0.740 0.818 0.897 0.762 0.822 0.882 0.528 0.580 0.633 
Nominal 
Range 6.436 8.965 12.508 5.284 6.231 7.389 5.288 7.138 10.254 2.500 3.317 4.654 3.570 4.314 5.313 
Nominal 
Variance 1.054 1.778 3.063 5.291 7.187 9.898 3.594 5.625 9.161 1.086 1.712 2.918 1.794 2.420 3.339 
Ar1 ! 0.677 0.842 0.930 0.805 0.853 0.890 0.249 0.675 0.923 0.917 0.953 0.978 0.678 0.767 0.837 
Variance for 
IID.ID 0.103 0.134 0.174 0.120 0.131 0.145 0.301 0.359 0.419 0.055 0.069 0.086 0.233 0.258 0.290 
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Supplementary Figure 7. Education (women, ages 15-49) posterior means and 95% 
uncertainty intervals.  
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Supplementary Figure 8. Education (men, ages 15-49) posterior means and 95% 
uncertainty intervals. 
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Supplementary Figure 9.  Education (women, ages 20-24) posterior means and 95% 
uncertainty intervals. 
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Supplementary Figure 10. Education (men, ages 20-24) posterior means and 95% 
uncertainty intervals. 
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5.3 Model validation 

5.3.1 In-sample metrics 

For each indicator, we generated a suite of diagnostic plots for each region and country 
estimated, in order to assess the in-sample performance of our model and compare to national-
level estimates produced by GBD. 

To explore residual error over space and time, absolute error (data minus predicted posterior 
mean estimates at the corresponding pixels) was produced at five-year intervals (2000, 2005, 
2010, and 2015) for each modelled region (see Supplementary Fig. 25-27).  

5.3.2 Metrics of predictive validity 

In order to assess the predictive validity of our estimates, we validated our models using spatially 
stratified five-fold out-of-sample cross-validation.30 To construct each spatial fold, we used a 
modified bi-tree algorithm to spatially aggregate data points. This algorithm recursively 
partitions two-dimensional space, alternating between horizontal and vertical splits on the 
weighted data sample size medians, until the data contained within each spatial partition are of a 
similar sample size. The depth of recursive partitioning is constrained by the target sample size 
within a partition and the minimum number of clusters or pseudo-clusters allowed within each 
spatial partition (in this case, a minimum sample size of 500 was used). These spatial partitions 
are then allocated to one of five folds for cross-validation. For validation, each geostatistical 
model was run five times, each time holding out data from one of the folds, generating a set of 
out-of-sample predictions for the held-out data. For each indicator, a full suite of out-of-sample 
predictions over the entire dataset was generated by combing the out-of-sample predictions from 
the five cross-validation runs. 

Using these out-of-sample predictions, we then calculated mean error (ME, or bias), root-mean-
squared-error (RMSE, which summarises total variance), and 95% coverage of our predictive 
intervals (the proportion of observed out-of-sample data that fall within our predicted 95% 
credible intervals) aggregated up to different administrative levels (levels 0, 1, and 2) as defined 
by FAO Global Administrative Unit Layers (GAUL).31 Administrative level 0 borders 
correspond to national boundaries, administrative level 1 borders generally correspond to 
regions, provinces, or state-level boundaries within a country, and administrative level 2 borders 
correspond to the next finer subdivision, often districts, within regions. These metrics are 
summarised in Supplementary Tables 4-12 for each indicator and are calculated across all 
regions. Included in the sample tables for comparison are the same metrics calculated on in-
sample predictions.  
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5.3.3 Education (women, ages 15-49) validation metrics 

Supplementary Table 9. Predictive metrics for education (women, ages 15-49) aggregated 
to admin 0.  
The out-of-sample (OOS) column indicates whether the metric was calculated using in-sample or 
out-of-sample predictions. 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 12964 -0.020 0.311 0.996 0.976 
2005 FALSE 10262 0.410 0.618 0.989 0.951 
2010 FALSE 13559 -0.073 0.363 0.998 0.976 
2015 FALSE 15795 0.145 0.367 0.986 0.877 

 
Supplementary Table 10. Predictive metrics for education (women, ages 15-49) aggregated 
to admin 1. 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 1249 -0.006 0.406 0.992 0.978 
2005 FALSE 729 0.409 0.786 0.979 0.949 
2010 FALSE 799 -0.073 0.446 0.995 0.976 
2015 FALSE 935 0.140 0.430 0.987 0.879 

 
Supplementary Table 11. Predictive metrics for education (women, ages 15-49) aggregated 
to admin 2. 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 141 -0.013 0.534 0.984 0.979 
2005 FALSE 76 0.409 1.051 0.956 0.957 
2010 FALSE 95 -0.073 0.595 0.988 0.975 
2015 FALSE 71 0.136 0.812 0.960 0.877 

 
Supplementary Table 12. Predictive metrics for education (women, ages 15-49) aggregated 
to holdout units. 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 31 -0.207 1.191 0.900 0.987 
2005 FALSE 30 0.409 1.223 0.938 0.960 
2010 FALSE 30 -0.072 0.840 0.973 0.974 
2015 FALSE 27 0.140 1.401 0.889 0.876 
2000 TRUE 31 -0.136 1.215 0.887 0.978 
2005 TRUE 30 0.258 1.111 0.945 0.970 
2010 TRUE 30 0.101 0.904 0.962 0.965 
2015 TRUE 27 0.101 1.493 0.873 0.857 
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Supplementary Figure 11. Education (women, ages 15-49) admin 0 aggregation. 
Comparison of in-sample education predictions aggregated to admin 0 with 95% uncertainty 
intervals plotted against admin 0 aggregated data observations. 
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Supplementary Figure 12. Education (women, ages 15-49) admin 1 aggregation. 
Comparison of in-sample education predictions aggregated to admin 1 with 95% uncertainty 
intervals plotted against admin 1 aggregated data observations. 
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Supplementary Figure 13. Education (women, ages 15-49) admin 2 aggregation. 
Comparison of in-sample education predictions aggregated to admin 2 with 95% uncertainty 
intervals plotted against admin 2 aggregated data observations. 
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5.3.4 Education (women, ages 20-24) validation metrics 

Supplementary Table 13. Predictive metrics for education (women, ages 20-24) aggregated 
to admin 0.  
The out-of-sample (OOS) column indicates whether the metric was calculated using in-sample or 
out-of-sample predictions. 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 2533 0.032 0.254 0.998 0.969 
2005 FALSE 2157 0.479 0.635 0.996 0.970 
2010 FALSE 2751 0.166 0.229 0.999 0.970 
2015 FALSE 3208 -0.100 0.388 0.981 0.867 

 
Supplementary Table 14. Predictive metrics for education (women, ages 20-24) aggregated 
to admin 1. 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 259 0.047 0.397 0.994 0.971 
2005 FALSE 147 0.479 0.743 0.991 0.974 
2010 FALSE 166 0.166 0.341 0.996 0.966 
2015 FALSE 130 -0.103 0.520 0.981 0.867 

 
Supplementary Table 15. Predictive metrics for education (women, ages 20-24) aggregated 
to admin 2. 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 30 0.039 0.542 0.985 0.971 
2005 FALSE 16 0.479 0.966 0.978 0.973 
2010 FALSE 19 0.165 0.559 0.988 0.967 
2015 FALSE 14 -0.106 0.903 0.947 0.867 

 
Supplementary Table 16. Predictive metrics for education (women, ages 20-24) aggregated 
to holdout units. 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 7 -0.165 1.169 0.908 0.986 
2005 FALSE 6 0.480 1.140 0.966 0.962 
2010 FALSE 10 0.166 0.781 0.975 0.969 
2015 FALSE 4 -0.104 1.094 0.919 0.865 
2000 TRUE 7 -0.062 1.232 0.892 0.981 
2005 TRUE 6 0.425 1.137 0.966 0.963 
2010 TRUE 10 0.092 1.023 0.953 0.944 
2015 TRUE 4 0.224 1.293 0.892 0.835 
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Supplementary Figure 14. Education (women, ages 20-24) admin 0 aggregation. 
Comparison of in-sample education predictions aggregated to admin 0 with 95% uncertainty 
intervals plotted against admin 0 aggregated data observations. 
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Supplementary Figure 15. Education (women, ages 20-24) admin 1 aggregation. 
Comparison of in-sample education predictions aggregated to admin 1 with 95% uncertainty 
intervals plotted against admin 1 aggregated data observations. 
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Supplementary Figure 16. Education (women, ages 20-24) admin 2 aggregation. 
Comparison of in-sample education predictions aggregated to admin 2 with 95% uncertainty 
intervals plotted against admin 2 aggregated data observations. 
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5.3.5 Education (men, ages 15-49) validation metrics 

Supplementary Table 17. Predictive metrics for education (men, ages 15-49) aggregated to 
admin 0.  
The out of sample (OOS) column indicates whether the metric was calculated using in-sample or 
out-of-sample predictions. 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 11971 -0.047 0.226 0.997 0.973 
2005 FALSE 9297 0.010 0.227 0.997 0.980 
2010 FALSE 12121 -0.026 0.268 0.997 0.970 
2015 FALSE 12969 -0.073 0.376 0.985 0.860 

Supplementary Table 18. Predictive metrics for education (men, ages 15-49) aggregated to 
admin 1 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 1302 -0.026 0.377 0.991 0.971 
2005 FALSE 693 0.010 0.384 0.993 0.978 
2010 FALSE 828 -0.025 0.368 0.994 0.971 
2015 FALSE 920 -0.077 0.479 0.982 0.857 

Supplementary Table 19. Predictive metrics for education (men, ages 15-49) aggregated to 
admin 2 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 143 -0.034 0.516 0.980 0.973 
2005 FALSE 77 0.009 0.602 0.983 0.980 
2010 FALSE 97 -0.026 0.571 0.983 0.970 
2015 FALSE 67 -0.080 0.926 0.934 0.853 

Supplementary Table 20. Predictive metrics for education (men, ages 15-49) aggregated to 
holdout units 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 30 -0.250 1.225 0.849 0.986 
2005 FALSE 30 0.011 0.827 0.966 0.980 
2010 FALSE 31 -0.025 0.883 0.958 0.972 
2015 FALSE 27 -0.073 1.442 0.849 0.859 
2000 TRUE 30 -0.289 1.265 0.834 0.977 
2005 TRUE 30 0.031 0.939 0.953 0.966 
2010 TRUE 31 -0.072 1.001 0.939 0.947 
2015 TRUE 27 -0.019 1.519 0.829 0.846 
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Supplementary Figure 17. Education (men, ages 15-49) admin 0 aggregation.  
Comparison of in-sample education predictions aggregated to admin 0 with 95% uncertainty 
intervals plotted against admin 0 aggregated data observations. 
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Supplementary Figure 18. Education (men, ages 15-49) admin 1 aggregation.  
Comparison of in-sample education predictions aggregated to admin 1 with 95% uncertainty 
intervals plotted against admin 1 aggregated data observations. 
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Supplementary Figure 19. Education (men, ages 15-49) admin 2 aggregation.  
Comparison of in-sample education predictions aggregated to admin 2 with 95% uncertainty 
intervals plotted against admin 2 aggregated data observations. 
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5.3.6 Education (men, ages 20-24) validation metrics 

Supplementary Table 21. Predictive metrics for education (men, ages 20-24) aggregated to 
admin 0.  
The out of sample (OOS) column indicates whether the metric was calculated using in-sample or 
out-of-sample predictions. 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 2250 -0.010 0.157 0.997 0.967 
2005 FALSE 1804 -0.037 0.283 0.996 0.973 
2010 FALSE 2303 0.185 0.345 0.992 0.962 
2015 FALSE 2308 -0.103 0.442 0.970 0.855 

 
Supplementary Table 22. Predictive metrics for education (men, ages 20-24) aggregated to 
admin 1 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 238 0.024 0.327 0.992 0.966 
2005 FALSE 122 -0.038 0.396 0.993 0.975 
2010 FALSE 142 0.185 0.422 0.990 0.962 
2015 FALSE 156 -0.106 0.529 0.969 0.848 

 
Supplementary Table 23. Predictive metrics for education (men, ages 20-24) aggregated to 
admin 2 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 26 0.016 0.476 0.982 0.968 
2005 FALSE 14 -0.038 0.590 0.985 0.973 
2010 FALSE 17 0.184 0.618 0.978 0.962 
2015 FALSE 11 -0.108 0.972 0.900 0.856 

 
Supplementary Table 24. Predictive metrics for education (men, ages 20-24) aggregated to 
holdout units 

Year OOS Median SS Mean err. RMSE Corr. 95% Cov. 
2000 FALSE 6 -0.154 1.065 0.891 0.988 
2005 FALSE 5 -0.037 0.785 0.974 0.974 
2010 FALSE 8 0.184 0.858 0.955 0.961 
2015 FALSE 5 -0.104 0.998 0.884 0.852 
2000 TRUE 6 -0.216 1.154 0.873 0.983 
2005 TRUE 5 0.159 0.927 0.962 0.964 
2010 TRUE 8 -0.033 1.038 0.929 0.935 
2015 TRUE 5 -0.073 1.216 0.832 0.820 
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Supplementary Figure 20. Education (men, ages 20-24) admin 0 aggregation.  
Comparison of in-sample education predictions aggregated to admin 0 with 95% uncertainty 
intervals plotted against admin 0 aggregated data observations. 
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Supplementary Figure 21. Education (men, ages 20-24) admin 1 aggregation.  
Comparison of in-sample education predictions aggregated to admin 1 with 95% uncertainty 
intervals plotted against admin 1 aggregated data observations. 
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Supplementary Figure 22. Education (men, ages 20-24) admin 2 aggregation.  
Comparison of in-sample education predictions aggregated to admin 2 with 95% uncertainty 
intervals plotted against admin 2 aggregated data observations. 
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5.3.7 Post estimation calibration to national estimates 

 
In order to leverage national-level data included in GBD 2016, but outside the scope of our 
current geospatial modelling framework, and to ensure perfect calibration between these 
estimates and GBD 2016 national-level estimates, we performed a post hoc calibration to each of 
our 1,000 candidate maps.32 For each posterior draw we calculated population-weighted pixel 
aggregations to a national level and compared these country-year estimates to the GBD 201632 
country-years. We defined the raking factor to be the ratio between the GBD 201632 estimate and 
our current estimates. Finally, we multiplied each of our pixels in a country-year by its 
associated raking factor. This ensures perfect calibration between our geospatial estimates and 
GBD 201632 national-level estimates, while preserving our estimated within-country geospatial 
and temporal variation. 
 
To allow comparison between our modelled estimates and the GBD 201632 national-level 
estimates to which they were calibrated, Supplementary Fig. 28-30 plot mean uncalibrated 
estimates from the model-based geostatistics (MBG) process aggregated to the national-level 
(“MBG mean”) as compared to the GBD national estimates (“GBD mean”) for all modelled 
years. The median raking factors for women 15-49, men 15-49, women 20-24, and men 20-24 
were 0.926 (interquartile range: 0.794-1.084), 0.895 (IQR: 0.761-1.012), 1.036 (IQR: 0.798-
1.031), and 1.053 (IQR: 0.861-1.233) respectively. 
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Supplementary Figure 23. Comparison of aggregated education (women, ages 15-49) MBG 
estimates to GBD 2016 education estimates.  
Note that our models and GBD 2016 datasets overlap but are not identical. 
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Supplementary Figure 24. Comparison of aggregated education (men, ages 15-49) MBG 
estimates to GBD 2016 education estimates.  
Note that our models and GBD 2016 datasets overlap but are not identical. 
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Supplementary Figure 25. Comparison of aggregated education (women, ages 20-24) MBG 
estimates to GBD 2016 education estimates.  
Note that our models and GBD 2016 datasets overlap but are not identical. 
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Supplementary Figure 26. Comparison of aggregated education (men, ages 20-24) MBG 
estimates to GBD 2016 education estimates.  
Note that our models and GBD 2016 datasets overlap but are not identical. 
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5.3.8 Verification and comparison against other subnational education estimates 

 
Estimates produced by MBG models were compared to raw estimates from the DHS series, each 
aggregated to the first subnational geographic subdivision. These results are presented below. 
 

 

 
Supplementary Figure 27. Comparison of education (women, ages 15-49) MBG estimates 
aggregated to admin 1 to DHS admin 1 estimates.  
95% uncertainty intervals are plotted along with the aggregated MBG estimates. Note that our 
model includes more data than just the DHS surveys. 
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Supplementary Figure 28. Comparison of education (men, ages 15-49) MBG estimates 
aggregated to admin 1 to DHS admin 1 estimates. 
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Supplementary Figure 29. Comparison of education (women, ages 20-24) MBG estimates 
aggregated to admin 1 to DHS admin 1 estimates. 
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Supplementary Figure 30. Comparison of education (men, ages 20-24) MBG estimates 
aggregated to admin 1 to DHS admin 1 estimates. 
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Supplementary Figure 31. Education (women 15-49) out-of-sample root-mean-squared-
error (RMSE) and 95% coverage.  
Fit statistics are aggregated by periods 2000-2002, 2003-2007, 2008-2012, and 2013-2015. 
“Covariates” is the INLA model fit with linear terms on all raw covariates; “Stacking” is fit with 
all stacking surfaces; “GP” is fit only with the space-time Gaussian process; “GP + covariates” is 
fit with linear terms on all raw covariates and the space-time Gaussian process; “GP + stacking” 
is fit with all stacking surfaces and the space-time Gaussian process. The green polygon highlights 
the area of desirable fit, defined for coverage (>95%), RMSE (0 to 1 year of education), and bias 
(-0.5 to 0.5 years of education). 

Supplementary Figure 32. Education (men 15-49) out-of-sample root-mean-squared-error 
(RMSE) and 95% coverage.  

Fit statistics are aggregated by periods 2000-2002, 2003-2007, 2008-2012, and 2013-2015. 
“Covariates” is the INLA model fit with linear terms on all raw covariates; “Stacking” is fit with 
all stacking surfaces; “GP” is fit only with the space-time Gaussian process; “GP + covariates” is 
fit with linear terms on all raw covariates and the space-time Gaussian process; “GP + stacking” 
is fit with all stacking surfaces and the space-time Gaussian process. The green polygon highlights 
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the area of desirable fit, defined for coverage (>95%), RMSE (0 to 1 year of education), and bias 
(-0.5 to 0.5 years of education). 
 
 

 

 
Supplementary Figure 33. Education (women 20-24) out-of-sample root-mean-squared-
error (RMSE) and 95% coverage.  
Fit statistics are aggregated by periods 2000-2002, 2003-2007, 2008-2012, and 2013-2015. 
“Covariates” is the INLA model fit with linear terms on all raw covariates; “Stacking” is fit with 
all stacking surfaces; “GP” is fit only with the space-time Gaussian process; “GP + covariates” is 
fit with linear terms on all raw covariates and the space-time Gaussian process; “GP + stacking” 
is fit with all stacking surfaces and the space-time Gaussian process. The green polygon highlights 
the area of desirable fit, defined for coverage (>95%), RMSE (0 to 1 year of education), and bias 
(-0.5 to 0.5 years of education). 
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Supplementary Figure 34. Education (men 20-24) out-of-sample root-mean-squared-error 
(RMSE) and 95% coverage.  

Fit statistics are aggregated by periods 2000-2002, 2003-2007, 2008-2012, and 2013-2015. 
“Covariates” is the INLA model fit with linear terms on all raw covariates; “Stacking” is fit with 
all stacking surfaces; “GP” is fit only with the space-time Gaussian process; “GP + covariates” is 
fit with linear terms on all raw covariates and the space-time Gaussian process; “GP + stacking” 
is fit with all stacking surfaces and the space-time Gaussian process. The green polygon highlights 
the area of desirable fit, defined for coverage (>95%), RMSE (0 to 1 year of education), and bias 
(-0.5 to 0.5 years of education). 
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